Advanced synthesis of highly-crystallized hexagonal boron nitride by coupling PDCs and SPS processes – influence of the crystallization promoter and sintering temperature

To cite this article before publication: Yangdi Li et al 2018 Nanotechnology in press https://doi.org/10.1088/1361-6528/aaebb4

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2018 IOP Publishing Ltd.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.
Advanced synthesis of highly-crystallized hexagonal boron nitride by coupling PDCs and SPS processes – influence of the crystallization promoter and sintering temperature

Yangdi Li1,2, Vincent Garnier1, Catherine Journet2, Julien Barjon3, Annick Loiseau1, Ingrid Stenger3, Alexandre Plaud3,4, Bérangère Toury2, Philippe Steyer1*

1. Univ. Lyon, INSA-Lyon, MATEIS, UMR CNRS 5510, 7 Avenue Jean Capelle, F-69621, Villeurbanne, France
2. Univ. Lyon, Université Lyon 1, LMI, UMR CNRS 5615, 6 rue Victor Grignard, F-69622, Villeurbanne, France
3. Groupe d’Étude de la Matière Condensée (GEMaC), CNRS, UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, F-78035, Versailles, France
4. Laboratoire d’Étude des Microstructures (LEM), CNRS, ONERA, Université Paris-Saclay, 29 Avenue de la Division Leclerc, F-92322, Châtillon, France

* E-mail : philippe.steyer@insa-lyon.fr

Abstract

Hexagonal boron nitride nanosheets (BNNSs) are promising 2D materials for their exceptional chemical and thermal stabilities together with electrical insulating properties. A combined synthesis method involving the Polymer Derived Ceramics (PDCs) route and the Spark Plasma Sintering (SPS) process is proposed, leading to well-crystallized and pure layered h-BN crystals, prone to be exfoliated into large BNNSs. Here we focus more specifically on the influence of two key-parameters of the process to be optimized: the Li3N concentration (0-10 wt.%) and the sintering temperature (1200-1950°C). The presence of Li3N, added as crystal promoter in the pre-ceramic powder, significantly improves the crystallinity level of the product, as evidenced by XRD, SEM and Raman spectrometry. Besides, sintering temperature strongly modifies the size of resulting h-BN flakes. Then, influence of sintering temperature on both purity and crystallinity is studied using a performing tool, the cathodoluminescence. h-BN flakes larger than 200µm² (average flake area) are obtained. Few-layered BNNSs are successfully isolated, through exfoliation process.

Keywords: Two-dimensional Materials, Graphene Substrates, h-BN, Spark Plasma Sintering, BNNSs, Polymer Derived Ceramics
1. Introduction

Since 2004, when scientists, for the first time, were able to isolate graphene nanosheets from graphite,[1] synthesis and properties of graphene have become keystones of worldwide research. Meanwhile, prompted by the rising star of graphene, the related 2D nanomaterials became a hot issue in the literature, such as hexagonal BN (h-BN), transition metal oxides (TMOs) and transition metal dichalcogenides (TMDs).[2-5] Among them, the hexagonal boron nitride nanosheets (BNNSs) consist of thin atomic layers made of B and N atoms covalently bounded in plane. BNNSs have shown to be an excellent gate dielectric support for graphene and other two-dimensional materials owing to their atomically smooth surface, high thermal conductivity and stability, combined with high mechanical strength. Compared with conventional SiO$_2$ substrate, lattice matching and absence of dangling bonds make BNNSs and graphene excellent pairing materials, and give incentive to develop various van der Waals hetero-structures.[6, 7] However, it has to be pointed out that such applications cannot be put into use without high purity large BNNSs.

To obtain large and pure BNNSs, Chemical Vapor Deposition (CVD) and exfoliation of BN crystals are generally considered. In the first method, different precursors could be used for the CVD synthesis. Among them, borazine is the main option, because it is isostructural to benzene.[8] The growth of BNNSs has been carried out primarily on transition metal substrates, such as Cu, Ni, Fe and so on.[9-12] This is based on their catalytic effect at high temperatures. In recent years, mono- and few-layered BNNSs with domains size up to centimeter-scale have been reported.[13-17] It should be mentioned that, CVD and CVD-derivative synthesis of BNNSs are strongly related to the morphology of substrates and purity of chemicals. Domain size, morphology and layer number are still the challenges for the applications of CVD BNNSs.[8, 18-20]

Another approach is a common method for obtaining 2D materials, which takes advantage of the weak inter-planar sheets forces. Obtaining BNNSs by exfoliation is greatly relevant to the quality of h-BN crystal source. Nevertheless, commercial sources are unreliable because of their high-level of defects and small crystal size, which are from 1 µm to 10 µm. The group of Watanabe and Taniguchi at the National Institute for Materials Science (NIMS) is able to prepare high quality...
crystals using their own High Pressure High Temperature (HPHT) method. This method needs to be conducted through severe conditions and long synthesis time.[21]

In order to achieve high quality large BNNSs, our group has already proposed preliminary results on a novel synthesis way by the Polymer Derived Ceramics (PDCs) route involving polyborazylene (PBN) as precursor, combined with the Spark Plasma Sintering (SPS).[22] Compared with samples from Saint-Gobain, HQ and CVD thin films, our h-BN sample exhibited better FWHM of Raman high frequency peak (E\textsubscript{2g} mode).[23, 24] Here we present further investigations on how to optimize the process, considering the influence on h-BN growth, of both sintering temperature and crystallization promoter. The PDCs route consists in the synthesis of very pure preceramic polymer from tailored molecular precursor in a non-oxide system. This intermediate compound (liquid, soluble or fusible) can be then easily shaped into different forms. Based on its relatively high ceramic yield, high purity and convenient B/N atomic ratio, PBN is ideal to get further stoichiometric h-BN through an appropriate thermal post-treatment. Due to its rapid heating, the highly energetic SPS process is considered as an efficient method for the densification of advanced powder-based materials. Compared with conventional sintering techniques, it is indeed possible to achieve near-theoretical density at lower sintering temperature, lower pressure and shorter dwelling duration. To date, densification of polymer-derived SiC, Si-O-C, Si-C-N and Si-B-C-N ceramics by SPS has been seldom investigated.[25-28]

2. Experimental method

The preparation of PBN was conducted following a procedure described elsewhere.[29] Role of crystallization promoter was studied by dispersing lithium nitride (Li\textsubscript{3}N, 99.5%, Aldrich) micro powders into pure homemade liquid polyborazylene (PBN).[30] Based on previous study,[31] a series of dispersive solutions with different concentrations of Li\textsubscript{3}N (0 %, 5 % and 10 wt.%) were prepared. These dispersions were slowly heated into a glove box filled with argon from room temperature to 200 °C, and hold at this temperature for 1 h leading to a solid-state polymer avoiding
further oligomer evaporation. The resulting white powder was then placed into an alumina crucible to be heated under N₂ at 650 °C (3°C·min⁻¹), then kept at this final temperature for 1 h.

For SPS experiments, a protective anti-sticking papyex® sheet was firstly covered on the inner surface of the 10 mm diameter SPS graphite die. The graphite die was filled with the preceramic powder in a glove box (300-400 mg) and then transferred into the SPS chamber (HP D 25, FCT System) in-between the two punches, then compressed at room temperature under uniaxial load until 90 MPa (see Figure 1). SPS heating was then conducted at different temperatures (1200 - 1950 °C) with the same heating rate (100 °C·min⁻¹) maintaining the 90 MPa load throughout the 1-hour sintering. This process time was defined from preliminary experiments based on XRD results, which have revealed that too short times (10 minutes) gave rise to a poorly crystallized product, while higher durations (6 hours) did not improve crystallinity. During the sintering, SPS chamber vacuum was 0.1 - 0.4 hPa. The heating process was held at this maximum temperature to complete the BN ceramization reaction and the densification process.

As-sintered h-BN pellets and exfoliated BNNSs were characterized from both chemical and microstructural viewpoints. Scanning Electron Microscopy (SEM) observations were carried out at very low accelerating voltage (800 V) using a SUPRA Zeiss 55VP microscope. A statistic size distribution was achieved by processing SEM images through the ImageJ software, analyzing
average area of 100 well-oriented h-BN flakes for each sintered pellet. The Raman scattering spectra were recorded in backscattering geometry using a high resolution Raman spectrometer setup (Labram HR800 from HORIBA Jobin-Yvon), using an excitation wavelength of 514.5 nm with a x100 objective. Mean and standard deviation were calculated over typically 100 spectra. X-Ray Diffraction (XRD) patterns were recorded with a Bruker D8 diffractometer, using the CuK radiation source. Cathodoluminescence (CL) was performed on 300 µm thick cross sections of each sample, prepared using a wire saw. At the end, a 5 nm gold film was deposited on the insulating hBN samples to avoid electrical charging during electron-beam irradiation. CL experiments rely on a JEOL7001F field-emission-gun scanning electron microscope (SEM). A parabolic mirror collects the light, which is further analyzed with a TRIAX550 Horiba Jobin-Yvon spectrometer equipped with a 600 grooves/mm grating. All samples were mounted together on a GATAN cold-finger cryostat cooled with liquid helium. Spectra are acquired with a 3 keV and 1 nA electron beam at a 10K cryostat temperature. The UV luminescence efficiency from exciton lines around 215 nm (S-series) was extracted following a procedure described elsewhere.[32] To assess a relevant analysis of the polycrystalline samples, CL spectra were acquired by exciting a large surface (1750 µm²) providing representative CL spectra, averaged over many crystals. BNNSs are prepared through a chemical procedure (in ethanol, 2 min ultrasonication, Hielscher UP400S). A droplet of the solution was simply deposited onto a 300 mesh carbon copper grid in order to perform Transmission Electron Microscopy (TEM) observations and Selective Area Electron Diffraction (SAED) using a JEOL 2100F microscope operating at 200 kV.

3. Results and discussion

3.1 Influence of crystallization promoter

The alkaline and alkaline earth metals such as lithium nitrides were first used as catalysts for synthesis of c-BN by Wendorf in 1960s.[33] Since then, Li₃N has become a traditional promoter for transforming h-BN to c-BN.[34, 35] Besides c-BN, Li₃N is also reported for a better h-BN crystallization level.[6, 36]

Owing to the further addition of Li₃N to the reactant powder, the final amount of h-BN got is affected. Product yield values (mass obtained over expected mass for the whole conversion of PBN
to h-BN) calculated for the three samples sintered at 1800°C, based on weight measurements, appear Table 1. During the ceramization process of PBN giving rise to h-BN, a H₂ release occurs, explaining the reason why the product yield of the Li₃N-free sample is different to 100% (93 %). With the increase of Li₃N addition in the pre-ceramic powder, the yield decreases drastically down to 61% for a Li₃N content of 10%. In addition to the expected H₂ release, more Li₃N added leads to a higher amount of intermediates, which are lost during the sintering step. Weight loss can be attributed to the reaction between PBN and Li₃N, reforming the intermediate compound, Li₃BN₂, to be eliminated.[30]

Table 1: Product yield of SPS pellet compared with pre-ceramic powder

<table>
<thead>
<tr>
<th>Li₃N Concentration</th>
<th>0</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Yield</td>
<td>93</td>
<td>80</td>
<td>61</td>
</tr>
</tbody>
</table>
Figure 2. Microstructural and chemical characterization of the product obtained for a 1800°C sintering temperature, without Li$_3$N (a-c), with 5 wt.% (d-f) and 10 wt.% Li$_3$N (g-i): a,d,g: SEM observation; b,e,h: XRD patterns; c,f,i: Raman spectra.

Figure 2 presents the microstructural and chemical characteristics of the samples prepared with different amounts of Li$_3$N added to the pre-ceramic powder and for a sintering step conducted at
1800°C. Without Li₃N, an "amorphous-like" disordered structure is observed, composed of undefined blocks (Fig. 2a). Interpretation of the XRD patterns confirms the very poor structural organization of the agglomerated product (Fig. 2b). Indeed, even if a reaction occurred during the SPS process, the resulting boron nitride is poorly crystallized with only three broad diffused peaks. It is worth mentioning that the (001) peak, particularly well defined for h-BN and characteristic of its 2-dimensional nature, does not evidence in this case any preferential texture. Such a poor quality of boron nitride, resulting from a partially transformation of pre-ceramic powder, is also corroborated by the Raman investigation, showing the E₂g mode peak centered at 1369.1 cm⁻¹ and a Full Width at Half Maximum (FWHM) value of 29.2 cm⁻¹. On the opposite, when 5 wt.% or 10 wt.% Li₃N is mixed with PBN (Figure 2d, 2g respectively), well-defined and sharp single peaks are observed. This proves the high efficiency of lithium nitride as crystal promoter, leading to well crystallized stacked BN. Considering the Raman spectra, the quality of h-BN regarding its structural and chemical characteristic is comparable. However, the XRD patterns show a bigger crystal size at 5 wt.% than at 10 wt.% as proved by the lower FWHM of the (002) diffraction peak (0.12° for 5 wt.% and 0.44° for 10 wt.%). It is worth mentioning that this value is significantly lower than that presented in other study[37]. Moreover, the effect of Li₃N on the flakes growth is obvious, the flakes mean dimension being modified between the two Li₃N investigated contents (276 µm² for 5 wt.% to be compared with 215 µm² for 10 wt.%).

As a partial conclusion, the Li₃N addition is necessary for obtaining well-crystalized h-BN flakes. No significant difference is noted between 5% and 10 wt.%, so that we have selected the lowest Li₃N amount, maintaining the highest ceramic yield, for the sintering temperature study.

3.2 Influence of sintering temperature

To determine the role of the SPS temperature and according to the previous results, all samples of this part were prepared with a powder containing 5 wt.% Li₃N. The as-sintered samples are 10mm-diameter pellets, which are characterized adopting a multiscale approach, involving SEM, XRD, Raman and cathodoluminescence (CL) investigations.

First, a microscopic characterization was conducted. Figure 3 presents a series of representative SEM images of raw materials sintered at different SPS temperatures. Whatever the temperature,
pellets show similar feature composed of defined BN domains staked into flakes and growing in different orientations.

![Cross-section SEM images of BN pellets](image)

Figure 3: Cross-section SEM images of BN pellets

a) 1200°C; b) 1500°C; c) 1800°C; d) 1950°C

(laminar structure shown in the insert image)

However, at the lowest temperature of 1200°C, it appears that the flakes show smaller lateral size compared to ones synthetized above. The lowest temperature gives rise to small micrometer-scale flakes (Fig. 3a). For higher sintering temperatures, flakes are significantly larger. It can be noticed that at higher magnification, BN flakes clearly show the characteristic laminar structure, prone to a further exfoliation (e.g., insert in Fig. 3d). Their dimension is difficult to determine quantitatively, however a distribution of the flakes size was estimated through a statistical approach, considering 100 flakes. The distribution graphs are presented in Figure 4. The flakes size increases with the temperature to reach a maximum area of 276 µm² at 1800°C, and more than half of flakes population is characterized by an area exceeding 250 µm². At 1950°C (the highest temperature allowed by the graphite die in our SPS machine at 90MPa), flakes dimension decreases a little to 245 µm². One explanation could be that at higher sintering temperature, the nucleation rate increases faster than the crystal growth rate, thus decreasing the flakes size. However, sintering
temperatures between 1500 and 1800°C seem to be a good compromise between these two opposite behaviors (number of nucleation sites versus growth kinetic).

![Flakes size distribution of sintered pellets](image)

Figure 4: Flakes size distribution of sintered pellets

The crystalline organization of the flakes was confirmed by a deeper investigation through XRD.
Figure 5 presents XRD patterns of pellets sintered at 1200°C, 1500°C, 1800°C and 1950°C. All patterns still exhibit thin and well-separated peaks, indicating a good crystalline structure. Besides, it is worth noting the major contribution of the (002) peak, which highlights the strong 2-dimensional character of the product. Except for the sample sintered at 1200 °C, all peaks are assigned to h-BN crystallographic planes in accordance with the 00-034-0421 JCPDS file. For the sample sintered at the lowest temperature, in addition to the representative h-BN peaks, Li₂B₄O₇ (JCPDS 00-018-0717) very slight peaks also appeared within the [20, 35°] 20 angular region (Fig. 5a). This compound may result from the reaction between PBN, Li₃N and little amount of O₂ impurity, which could have been adsorbed on the surface of the reactor and the pellet prior to the chamber vacuum. Li₂B₄O₇ starts to melt at 917°C,[38] but traces of this oxide are still recorded at 1200°C. This compound is nevertheless totally degraded at 1500°C, since its corresponding XRD pattern does not show any traces of Li-based compounds anymore (Fig. 5b). This means that,
although little O$_2$ may react with the precursor during the sintering process, this undesirable oxide is likely to be removed out of the pellet together with the H$_2$ flow, as expected during the ceramization process.[29] From these first results, one can expect that sintering process should be performed above 1500°C to avoid any lithium-based contamination.

![Raman spectra of sintered pellets](image)

Figure 6: Raman spectra of sintered pellets
a) 1200 °C; b) 1500 °C; c) 1800°C; d) 1950 °C

h-BN crystal quality has been characterized by Raman spectroscopy. All spectra, presented in Figure 6, show narrow well-defined single peaks, centered on the expected 1365.8 cm$^{-1}$ frequency shift. Homogeneity was investigated by performing horizontal and vertical line scans on pellet cross-sections. Mean and standard deviation were calculated over typically 100 spectra giving rise to relevant values.
Figure 7 shows a graph presenting the mean value and the standard deviation of the FWHM of the E_{2g} peak as a function of the sintering temperature. It appears that the standard deviations are typically around 0.6 to 1 cm$^{-1}$ due to variations from grain to grain inside one sample. The mean FWHM values are centered on 9 cm$^{-1}$ with the lowest value at 8.5 cm$^{-1}$ for the 1500°C sample. It can be noted that under the same operating conditions, our best value is close to the one of reference samples from NIMS and others.[24, 37, 39]

Recently, it has been demonstrated that CL is a much richer characterization method for h-BN crystals than the Raman single peak (1366 cm$^{-1}$) and FWHM analysis, usually performed in non-resonant conditions.[24] This characterization technique is very sensitive to deep structural and chemical defects, and in this sense is complementary to XRD and Raman measurements. In this context, average CL spectra were recorded on pellet cross-sections exciting a sufficiently large area to analyze many grains. In these conditions, no significant variations are found inside the pellet volume, and the representative CL spectra are presented and analyzed in Fig. 8.
Figure 8: CL results showing a) low spectral resolution, b) high spectral resolution, c) UV luminescence efficiency versus SPS temperature, d) CL of impurities compared to free excitons versus SPS temperature.

Fig.8(a) first gives a spectrum overview for CL intensity comparisons. Except with the low temperature annealing at 1200°C, luminescence from impurities with a zero-phonon-line at 302 nm predominates. Such luminescence from middle gap energy states is related to point defect centers containing carbon or oxygen as already shown by other authors.[40-42] The so-called D series attributed to excitons trapped at structural defects is also observed with a maximum at 227 nm. Finally, the intrinsic luminescence of the h-BN free excitons is observed around 215 nm, as better shown at high resolution on Fig. 8(b) revealing phonon-assisted lines of indirect excitons (S series).

As in conventional semiconductors, the efficiency of intrinsic light emissions provides an efficient way to indicate the overall material quality, accounting for both purity and crystallinity. Fig.8(c) shows that the measured luminescence efficiency (LE) decreases strongly when using high...
temperatures for the sintering process. Such an interpretation is supported by the ratio between the impurity-related and the intrinsic luminescence drawn in Fig. 8(d), which increases by 2 orders of magnitude from 1200°C to 1950°C annealing temperatures. This is most probably due to a non-intentional thermally activated diffusion of impurities in h-BN pellet, such as carbon and oxygen. Presence of these elements at a level of the atomic percent has indeed already been reported in the literature [22] and has to be associated with graphite parts in the SPS reactor and with the primary vacuum involved during the sintering operation.

As a summary, the highest SPS temperatures promote larger flakes with better structural quality as shown by Raman spectroscopy. However, CL shows that high temperatures also induce a contamination of h-BN crystals by impurities. This work opens the way to an optimization of the SPS process, matter of compromise between crystallinity and flake sizes.

3.3 Towards h-BN nano-sheets

The main goal of the study was to optimize the experimental conditions in order to give rise to well-crystallized and large h-BN flakes, prone to be exfoliated into high quality BNNSs. Actually, a SPS sintering of a pre-ceramic powder including 5 wt.% Li$_3$N performed between 1500 and 1800°C allows getting well-crystallized, low impurity content h-BN flakes larger than 200μm2 (average area) with a good yield (80%). These flakes were then dispersed in ethanol and chemically exfoliated for TEM observations (Figure 9). The micrograph acquired at low magnification shows a representative several microns sheet (Fig. 9a). Its size is by far lower than that of original flakes, which may be explained by their damage under external force generated by sonication during the exfoliation process. Nevertheless, the above-mentioned high quality of h-BN is also shown at atomic scale. We indeed observe few-layered (less than 10) uniform BNNSs, with an hexagonal structure clearly confirmed by SAED, which shows six bright spots hexagonally distributed (Figure 9b and insert). This corresponding SAED pattern is interpreted as the AA’ atomic stacking in the c-direction.
4. Conclusion

This study aimed to better understand and optimize an innovative laboratory-scale way to produce hexagonal BNNSs through a combination of PDCs route and SPS process. The two key-parameters, temperature and Li$_3$N contents, were investigated.

Without Li$_3$N, a single-blocked poorly crystallized material is obtained. For a 5 or 10 wt.% Li$_3$N addition to the PBN powder, structural and chemical characteristics are excellent. However, the further Li$_3$N reactant also affects the product yield owing to the elimination of intermediate compounds. The 5wt.% addition of Li$_3$N presents thus the best compromise between the amount of h-BN got, and its crystallinity.

It has also been established that at too low temperature (1200°C), some intermediate reaction products still remain in the resulting pellet, like Li$_2$B$_4$O$_7$, showing that Li$_3$N may act as an oxygen gas getter. From 1500°C, the reaction seems completed and the by-products eliminated, giving rise to high-quality well-crystallized h-BN staked flakes with average flake area more than 200µm2.

The best experimental conditions (sintering from 1500 to 1800°C with 5 wt.% Li$_3$N enriched pre-ceramic powder) lead to flakes around 250 µm2 on average. XRD and Raman spectra prove good crystal quality even if CL detects some traces of contamination, when increasing the sintering
temperature. We are now optimizing the exfoliation step in order to deliver larger sheets, whose size will be comparable to that of original flakes.

Acknowledgement

This work was financially supported by ANR through the project 14-CE08-0018 «GoBN», European Union Horizon 2020 Program under the Graphene Flagship (grant number 604391), and Chinese Scholarship Council (CSC). Authors also thank the CTμ (Centre Technologique des Microstructures) of the Université Claude Bernard Lyon 1 and the CLYM (Consortium Lyon Saint-Etienne de Microscopie) for access to microscopies.

Conflicts of interest

The authors declare no conflict of interest.

References

